UV radiation is generally divided into the areas of UVA, UVB, UVC, and vacuum UVC. UV radiation has a shorter wavelength and more energy than visible light. While UVA and UVB from the solar spectrum partially penetrate the earth’s atmosphere, UVC (100-300nm) is filtered out completely in the stratosphere. That is why life, which uses a UVC unstable molecule (DNA) for coding, was able to develop on Earth.
Radiation below 200 nm is completely suppressed by the emitter’s special quartz mixture. By the term UVC disinfection, it therefore does not bond the entire range of 100-300 nm, but particularly the range around 260 nm, where the DNA is most sensitive. An analysis of the disinfection level of UVC between the wavelengths of 200 and 300 nm (yellow line) shows the highest efficiency between 240-280 nm with a maximum at 260 nm. If you compare the absorption spectrum of the genetic material (DNA, blue line), you see an almost identical course. The more UVC is absorbed by the DNA, the more it is destroyed - the disinfection level increases.
UVC disinfection tubes give off most of their radiation precisely at 253.7 nm (purple bar), the maximum amount of DNA destruction. About 30% of the electrical energy is delivered at low pressure radiators at this wavelength, that is why this technique is so efficient. There are hardly any ancillary spectra that would be critical to material compatibility.
In general, all forms of life on Earth are organized based on DNA or RNA which is similarly constructed. This means any organism can be damaged by UVC radiation. The simpler the form of organization and the smaller the cell volume of the various organisms, the more effective is the kill rate through UVC. The dose at which 90% of the organisms of a species is killed, it is called LD90 dose. To kill simple bacteria generally requires between 1.5 and 6 mJ/cm2, for larger yeasts with nucleus, between 6-10 mJ/cm2 and for fungal spores that are made for survival in extreme environments it may take even 20 to a maximum of 120 mJ/cm2 to kill 90%.
Within the groups of organisms there are also differences because of dyes in the cell walls and the type of DNA packaging. Extensive tables and literature exist listing the LD90 doses of different species for the calculation of disinfection doses. The presentation and the density of the microorganisms is also important for the design of disinfection systems, because shading, reflection, and dispersion affect the dose with which the UVC radiation can reach the DNA. Another important factor for the required LD90 dose, and thus the success of the UVC disinfection is the cell cycle of the organisms. Cells with high protein synthesis, as is necessary during the cell division, are damaged significantly faster because the DNA is extracted and thus easier to reach for the UVC radiation.
Water treatment for domestic or industrial use.
UV sterilizer lamp
Flow capacity: 300 l/h
230V - 50Hz, 10W
Stainless steel
UV sterilizer lamp
Flow capacity: 600 l/h
230V - 50Hz, 16W
Stainless steel
UV sterilizer lamp
Flow capacity: 1000 l/h
230V - 50Hz, 38W
Stainless steel
230V - 50Hz, 10W
Lenght: 210 mm
230V - 50Hz, 16W
Lenght: 320 mm
230V - 50Hz, 38W
Lenght: 430 mm
ITALIA RENTACS ITALIA s.r.l.
Tel: +39 06 36388370 www.rentacs.it
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
THE NETHERLANDS RENTACS INTERNATIONAL B.V.
Tel: +31 (0)854865021
Fax: +31 (0)854865026
Email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Algerastraat 28
3125 BS Schiedam
The Netherlands
via Salaria 290 00199- Roma
Italia
Dr. Omar abed al aziz
E. This email address is being protected from spambots. You need JavaScript enabled to view it.
Ph. +971555662863
Abu Dhabi. UAE
Mike Schoerie
USA
E. This email address is being protected from spambots. You need JavaScript enabled to view it.
Ph. +1 (203) 8567537
Mike Schoerie
Africa
E. This email address is being protected from spambots. You need JavaScript enabled to view it.
Ph. +1 (203) 8567537